
AD-AO84 R2 TEXAS UNIV AT AUSTIN CENTER FOR CYBERNETIC STUDIES F/6 12/2
A PRIMAL SI4PLEX VARIANT FOR THE MAXIMUM FLOW PROBLEM,(U)
DEC 79 F GLOVER- D KLINGMAN, J MOTE NOOOfs-78-C-0222

UNCLASSIFIED CCS-362

mmmiii D-

11111 ~ W ___________ I3 1111122

1111 111112.2

_ I 25 1. 1111.6

MICROCOPY RESOLUTION TEST CHART

iLEVEUL

0

CENTER FOR
CYBERNETIC

STUDIES
The University of Texas

Austin Texas 78712

DTIC
ELECTE
MAY2 01980D

E

DWIRiUUON STATEMENT A
Approved for public releauul r-

Dtr'buton Unlimited _ i, "

80 519 099

- -'- j

Pi SIMPLEX.ARIANT FOR

TEMAXIMUM FLOW PROBLEM

- by

,.--" Fred jaove*

D arwinicingmaj*

i John Mt f%

David Whitman**

* Professor of Management Science, University of Colorado,

Boulder, CO 80309

** Professor of Operations Research and Computer Sciences, BEB 608,
The University of Texas at Austin, Austin, TX 78712

*** Systems Analyst, Analysis, Research, and Computation, Inc.,
P.O. Box 4067, Austin, TX 78765

**** Systems Analyst, Analysis, Research, and Computation, Inc.,
P.O. Box 4067, Austin, TX 78765

This research was partially funded by the U.S. Department of Transportation,
contr ct No. !T-6S-709N'and by the Office of Naval Research, Contract No.

(/I- N O14.-78-C- 2 dproduction in whole or in part is permitted for anyr purpose of theI t ed States Government.

CENTER FOR CYBERNETIC STUDIES NTeiS n orA&~NTIS GRA&I

A. Charnes, Director D,)C TAB
Business-Economics Building, 203E Unarnounced

The University of Texas JutLification
Austin, TX 78712
(512) 471-1821 By ,,,

•~~r s'. ,iu onL .':t

' ~ I ~k•;a'il and/oz

i D~st pecial

-111 P--

ABSTRACT

This paper presents a number of specialized implementations of

the primal simplex algorithm for the maximum flow problem. Computa-

tional results indicate that some of these variants are both faster

and require less computer storage than our best implementation of the

classic labeling algorithm for maximum flow problems.

1.0 INTRODUCTION

For a number of years the maximum flow network problem has attracted

the attention of prominent researchers in network optimization. Since

the ground-breaking work of Ford and Fulkerson [9, 15, 16, 17, 18], a

variety of algorithms [1, 5, 6,11, 12, 13, 14, 26, 27, 29, 30, 32, 33,

37] featuring good "worst-case" bounds have been proposed for this

problem. Surprisingly though, there has been almost no empirical eval-

uations of these algorithms.

Cheung [6] recently conducted the first significant computational

investigation of maximum flow methods, testing several of the major

approaches. Although an important step in the right direction, Cheung's

implementations employ methodology and data structures originating at

least a dozen years ago [5].

In the past decade, however, advances in network implementation

technology have been dramatic. Improved labeling techniques and

more effective data structures have (a) decreased total solution time

and/or (b) reduced computer memory requirements [2, 4, 10, 19, 20, 21,

24, 25, 35, 36]. As a result, widely held beliefs about which algo-

rithms are best for particular problem classes have been steadil,"

challenged and in some cases completely overturned [10, 19, 21, 28,

35, 36]. This study likewise discloses several misconceptions about

maximum flow algorithms whose challenge was overdue.

The emergence in recent years of the primal simplex algorithm as

a superior solution technique for the more general classes of network

2

flow problems prompted us to develop a number of specialized imple-

mentations of the primal simplex algorithm for the maximum flow

problem. Somewhat to our surprise, these primal codes can solve

problems both faster and with less omputer storage than our best

implementation of the classic labeling algorithm for maximum flow

problems.

2.0 PROBLEM DEFINITION

Let G(N,A) be a directed network consisting of a finite set N of

nodes and a finite set A of arcs, where each arc k e A may be denoted

as an ordered pair (u,v) (referring to the fact that the arc is directed

from node u C N to node v C N). Associated with each arc k - (u,v) is

a flow variable xk and an upper bound or capacity coefficient uk. Addi-

tionally, two specific nodes s E N and t C N are called the source and

terminal, respectively.

The standard formulation of the maximum flow problem from a source

node (s) to a terminal node (t) is given by:

Maximize x (1)

subject to:
- xk + x xk -x (2)
kcFS(s) keRS(s) 0

-x xk + 1 xk x 0 (3)
kCFS(t) kERS(t)

-1 xk + xk 0, i C N - {s,t} (4)
kEFS(i) kCRS(i)

i"

3

0 xk I Uk, for all k c A (5)

x -0 (6)
0

where FS(i) {k:k = (ij) e A) and RS(i) = {k:k - (J,i) e A}. FS(i) is

called the forward star of node i and is the subset of arcs that originate

at node i. Correspondingly, RS(i) is called the reverse star of node i

and is the subset of arcs that terminate at node i. Where there is no

danger of confusion, we will also sometimes refer to the nodes that

are endpoints of a (forward or reverse) star as elements of the star

itself. It is standardly assumed that RS(s) and PS(t) are empty, and

hence sums of flows over arcs in these sets are often not included in (2)

and (3).

3.0 EXPERIMENTAL DESIGN

3.1 Overview

Alternative implementation methods are evaluated in this study by

solving a diverse set of randomly generated maximum network flow problems

using the same computer (a CDC 6600) and the same FORTRAN compiler (MNF).

All codes were executed during periods of comparable demand for computer

use and were implemented by the same systems analysts with no attempt

to exploit machine hardware characteristics.

Even with these safeguards, minor differences between the solution

times of any two codes, for a single test run of each, are of question-

able significance. For this reason, most of the problem networks were

solved five times (i.e., for five different source-terminal pairs) and

the median solution time reported. Each code makes use of a real-time

44

clock routine supplied by the computer vendors. Such routines can be

accessed by a FORTRAN subroutine call and are generally accurate to

two decimal places.

Problem data are input ("read in") to each code in exactly the

same fashion (arc by arc, in the same "random" order). Since we imple-

mented different data structures in the various codes it is necessary

to consider two timing statistics when comparing codes. The total solu-

tion time records the elapsed time after input of the network and prior

to the output of its solution. This includes the time required to

initialize the function arrays. However, codes that are able to store

the networks as originally input have an obvious advantage under this

timing procedure. Consequently, a second solution statistic for each

problem measures only the problem optimization time and disregards the

time required to arrange the problem data in the function arrays and to

retrieve the solution in a suitable output form.

3.2 Test Problems

The primary objective of this research effort was to design a solu-

tion algorithm that can be used to solve the large scale maximum flow

problems that arise in the design and analysis of real-world transporta-

tion systems. In order to evaluate the solution capabilities of the

numerous algorithmic variants and refinements that were studied, a data

base of test problems was required. The design of this data base was

the focus of a considerable amount of effort and a number of researchers

in the network area were contacted regarding their opinions on problem

structures most appropriate for investigation.

5

As a result of this analysis, four different classes of test prob-

lems were selected for the data base. Many members of eacO class of

problems, with varying numbers of nodes and arcs, and varying arc

capacities, were generated in order to analyze the effects of the prob-

lem dimensions on algorithmic solution capabilities. Altogether, over

one hundred and fifty test problems were included in the data base.

Each of the four major classes of test problems will be described

briefly. A uniform probability distribution was used in all instances

to randomly select items such as nodes and upper bounds.

The first and simplest class of test problems consists of unstruc-

tured or "random" networks. Such a network is constructed by initially

identifying the node set N (whose elements may be assumed to be numbered

from one to INI). The set of arcs, A, is generated by successively

selecting ordered pairs of nodes, u e N and v e N - {ul thus creating an

arc (u,v) for each pair selected. Multiple arcs directed from node u

to node v are not allowed in this, or the other three, classes of test

problems. The integer upper bounds, or arc capacities, are selected

within a pre-defined interval. The source node, s, and the terminal

node, t, are randomly chosen from the elements of N.

Due to the simplicity of the arc generation process, this class

of problems possesses no specific underlying structure, and hence is

referred to as the random class. Twelve different sets of problem

dimensions, RI, R2,..., R12, were selected for this class, each contain-

ing five different problems. The specific problem dimensions are pro-

vided in Table I. Random problems were included in the study because

it

6

TABLE I

RANDOM PROBLEMS

ARC

PROBLEM INI IAI CAPACITY RANGE

R1 250 1250 1-100

R2 250 1875 1-100

R3 250 2500 1-100

R4 500 2500 1-100

R5 500 3750 1-100

R6 500 5000 1-100

R7 750 3750 1-100

R8 750 5825 1-100

R9 750 7500 1-100

RI0 1000 5000 1-100

R11 1000 7500 1-100

R12 1000 10000 1-100

they represent the closest analogy to test problems used by Cheung [6]

and because most maximum flow literature makes no reference to any

particular problem structure.

The second class of problems is called the multi-terminal random

class. Unlike a random network, a multi-terminal random network possesses

a small degree of underlying structure. The source and terminal nodes for

these problems actually play the role of master source and master terminal.

This results by assigning infinite capacities to all arcs incident upon

these two nodes, so that all nodes in the forward star of the source

... A

7

node serve as "effective sources," and all nodes in the reverse star

of the terminal node serve as "effective terminals."ri The effect of this construction is to create a problem that

simulates a true multiple source and multiple terminal network. While

the objective of a random network problem is to determine the maximum

f low from the source node s to the terminal node t, the objective of

a multi-terminal random network problem is to determine the maximum

flow from the set of effective source nodes {vj(s,v) e Al to the set

of effective terminal nodes {uI(u,t) c Al. It is important to dis-

tinguish between "true" and "simulated" problems because prior knowledge

that a problem contains multiple sources and terminals can be used

to re-design an algorithm to make it more effective for this situation.

one goal of this study was to pose maximum flow problems of alternative

structures without "informing" the algorithm in advance what those

structures were.

Twelve different sets of problems, MRl, MR2,.. ., MR12, were selected

for the multi-terminal random class, and five problems were generated

for each set. All problems from a given set share the same problem

dimen sions. Specific problem dimensions are indicated in Table II.

The third class of problems introduces additional structure into the

network. This problem class is called the transit grid class. The source

* and terminal nodes again serve as master source and master terminal, as in

the multi-terminal random problems, implicitly creating a set of effective

sources and effective terminals. All nodes other than s and t are re-

ferred to as grid nodes, which can be viewed as arranged in a rectangular

grid of r rows and c columns. Every adjacent pair of grid nodes is con-

TABLE II

MULTI-TERMINAL RANDOM PROBLEMS

AVERAGE NO. OF
ARCS INCIDENT
ON EACH MASTER ARC

PROBLEM INI* IAI SOURCE (TERMINAL) CAPACITY RANGE**

MRI 250 1250 5.0 1-100

MR2 250 1875 7.5 1-100

MR3 250 2500 10.0 1-100

MR4 500 2500 5.0 1-100

MR5 500 3750 7.5 1-100

MR6 500 5000 10.0 1-100

MR7 750 3750 5.0 1-100

MR8 750 5825 7.5 1-100

MR9 750 7500 10.0 1-100

MRIO 1000 5000 5.0 1-100

MR11 1000 7500 7.5 1-100

MR12 1000 10000 10.0 1-100

*There were five master source nodes and five master terminal nodes.

**Excluding arcs entering or leaving source and terminal nodes.

nected by two oppositely directed arcs whose capacities are selected from

a pre-defined interval.

Like the multi-terminal random class, this class of problems simulates

multiple source and multiple terminal networks (and the algorithms are not

amended to capitalize on this fact). Unlike the random and the multi-ter-

minal random networks, the additional structure of the transit grid networks

closely resembles that arising in urban transit planning networks. In this

9

setting, the grid structure captures the form of transportation routes in

the greater suburban area. Source nodes represent major transit exchanges

or vehicle storage facilities and terminal nodes correspond to collection

nodes which are connected to key demand points within the city.

Eight different sets of problem dimensions were chosen for the

transit grid class. Again, five different problems were generated for

each set of dimensions. These sets of transit grid problems are re-

ferred to as TGl, TG2,..., TG8. Table III contains the specific problem

dimensions for these sets.

TABLE III

TRANSIT GRID PROBLEMS

AVERAGE NO. OF
ARCS INCIDENT TO EACH

MASTER SOURCE ARC
PROBLEM INI* IAI (TERMINAL) CAPACITY RANGE**

TGI 235 1240 40 1-100

TG2 235 1640 80 1-100

TG3 410 2120 60 1-100

TG4 410 2720 120 1-100

TG5 635 3200 80 1-100

TG6 635 4000 160 1-100

TG7 910 4480 100 1-100

TG8 910 5480 200 1-100

*Including five master source nodes and five master terminal nodes.

**Excluding arcs entering or leaving master source and master terminal
nodes.

10

HThe final class of test problems possesses the most elaborate

structure. This class consists of totally dense, acyclic networks in-

volving an even number of nodes. Every pair of nodes is connected

by an arc directed from the node with the smaller node number to the

node with the larger node number. The capacity of the arc (u,v) is 1

if v > u + 1 and is 1 + (u - IN)2 if v =u + 1. Node 1 is the source

node and node N is the terminal node.

Although somewhat artificial, this class of problems was included

because it was expected to require a large number of iterations

(starting from a zero flow initial state) since the optimal solution

is obtained when the flow on every arc in the network is at its upper

bound. This class is referred to as the hard class- Five problems,

H1, H2,..., H5, were considered differentiated by their dimensions.

Table IV presents the relevant parameters.

TABLE IV

HARD PROBLEMS

ARC

PROBLEM INI JAI CAPACITY RANGE

Hl 20 190 1-82

H2 40 780 1-362

4H3 60 1770 1-782

H4 80 3160 1-1522

H5 100 4950 1-2402

11

4.0 PRIMAL SIMPLEX VARIANT

4.1 Algorithm and Implementation Overview

Our specialization and alternative implementations of the primal

simplex method for the maximum flow network problem begin with an

idea which has also independently been proposed by J. Shapiro [34], and

more recently observed again by Goldfarb and Grigoriadis [23]. Specific-

ally, we rewrite problem (1)-(6) in an equivalent form that makes it

possible to isolate a particular basis structure. The equivalent formu-

lation is:

Maximize yl (7)

subject to: - Xk + k + Yl = 0 (8)

keFS(s) keRS(s)

x k + x k -Y2" 0 (9)
kEFS(t) kcRS(t)

-F S k + xk = 0 iEN-{s,t} (10)kF-FS (i) kERS(i)

-Y + Y2 = 0 (11)

0 xk < u k c A (12)

0 < yl , y2 (13)

The preceding formulation arises by augmenting the original network

G(N,A) by an additional node associated with equation (11) and two addi-

tional arcs associated with the variables yI and y2 " Letting d denote

the additional node and G(N,A) denote the full associated network, then

- N U{d} and A = AU{(t,d), (d,s)}.

LI | |I

12

Problem (7)-(13) constitutes a special circulation format for

problem (1)-(6). Obviously, problem (l)-(6) could have been circu-

larized more compactly by simply moving the right hand side of (2)

and (3) to the left hand side, thereby implicitly adding an arc from

the terminal to the source. The reason for using instead the format

of (7)-(13) will soon become apparent.

In this variant of the primal simplex method, the basis tree

T(N,AT) is distinguished by the choice of node d as the root. Further-

more, without loss of generality, we may assume that arcs (d,s) and

(t,d) are basic and are thus in AT~. Consequently, nodes s and t

always hang from the root d. This special organization enables the

remaining nodes N - {d,s,t} to be partitioned into two subsets: those

hanging below node s and those hanging below node t. For ease of dis-

cussion we refer to nodes on the s-side and t-side of the tree. (This

node partitioning corresponds to a cut in graph terminology.) A small

example will be used to illustrate the structure of the basis tree for

the maximum flow problem. A 10-node and 21-arc network is given in

Figure 1. The bounds on the allowable flows are specified in parenthesis

beside the associated arcs. An example of a basis tree for this problem

is given in Figure 2.

Building on this foundation, we undertook to test two ways of

* storing the original problem data as an initial step to implementing

our specialized primal simplex maximum flow algorithm. The first

storage scheme, called the random form, uses three IAJ length lists,

FROM, TO, and CAP, to store the original problem data without arranging

13

FIGURE 1

EXAMPLE NETWORK

FIGURE 2

FEASIBLE BASIS TREE

Mon -Bsic Arcs
of Capacity

6-(3.4) 61

7-(4.5)

9-(5,2)
11 -(6,7)47
12-(6,4)

13-(7,S)

L15-(9.4)

14

them in any particular order. This effectively restricts the algorithm

to simple sequential processing of the arcs, since the data structure

does not allow individual forward or reverse stars to be accessed effi-

ciently. The random form data structure is illustrated in Figure 3 for

the small problem given in Figure 1.

The second data structure used in the testing of the primal maximum

flow algorithm is called the forward star form. With this data structure

the arcs must be sorted according to coummon origin nodes, storing arcs

of a given forward star in contiguous locations in the arc data lists.

The JAI length list FROM is replaced by a INI length list, OUT, that

points to the location in the arc data lists of the first arc in each

forward star. In addition to this INI length list, the forward star

form uses two JAI length lists, TO and CAP. The forward star form data

structure is illustrated in Figure 4.

To implement these data representation schemes in a truly effective

manner, we use six INI length lists to store and update the basis tree

and the corresponding primal and dual solutions. These lists are: the

predecessor node (PN), predecessor arc (PA), thread (THREAD), depth

(DEPTH), node potential (POT), and net capacity (NETCAP). Descriptions

of recent effective uses of these lists in other network contexts can

be found, for example, in 12, 3, 4]1.

The predecessor node is an "upward pointer" in the basis tree. It

identifies the unique node directly above each node in the basis tree

(except the root). The predecessor arc is the arc number of the basic

arc connecting a node to its predecessor node and provides access to

15

FIGURE 3

RANDOM FORM

ARC FROM TO CAP

1 1 2 4

2 2 6 6
3 5 2 1

4 5 6 4

6 6 7 3

6 6 4 1
7 10 6 2

* 7 8 3
9 10 7 1

10 10 a 2

11 9 a S

12 5 9

13 9 10 1

14 10 9 4

Is 9 4 1

16 4 10 5

17 3 4 2

I 4 5 3

19 1 5 2

20 1 3 3

21 r3 151 - I

16

FIGURE 4

FORWARD STAR FORM

MODE OUT TO CAP ARC

1 1 --- 00p 2 4 1

2 4 =5 2 2

3 5 3 3 3

4 7 6 a 4

5 9 5 1 5

86 1 4 2 6

7 13 5 3 7

8 14 10 5 a

9 15 2 1 9

10 I8 6 4 10

11 22 7 3 11

4 1 12

a 3 13

9 1 14

4 1 15

10 1 16

a 5 17

6 2 I8

7 1 19

82 20

9 4

17

the original problem data. The thread, by contrast, is a circular list

that links the nodes of the basis tree in a top to bottom, left to

right fashion, enabling all nodes in any subtree to be traced in un-

broken succession. The depth of the node is simply the number of arcs

on the unique path in the basis tree from the node to the root, while

the node potentials are the dual variables associated with the current

basis tree. Finally, the net capacity is the amount of allowable flow

change on the predecessor arc in the direction from a node to its pre-

decessor node. That is, if the predecessor arc is pointed down (up)

in the basis tree, then the net capacity of the arc is simply the current

flow on the arc (upper bound minus current flow). This unorthodox

way of storing relevant solution data for the problem actually simpli-

fies the solution procedure. Figure 5 gives the INI length lists asso-

ciated with the basis tree in Figure 2.

By associating a dual variable i with each node i c N, the comple-

mentary slackness property of linear programming implies the following:

7d + n = 1 (14)

7d - t = 0 (15)
t

- 'i + 7T = 0 for all (ij) C AT - {(t,d), (d,s)) (16)

Since redundancy allows the value of any one of the 7i to be set ar-

bitrarily, we elect to set Td = 0. This choice, made natural by the choice

of d as root, yields a solution to (14)-(16) such that 7Ti - 1 if node i is

on the s-side of the basic tree and 7ir = 0 if i is on the t-side of the

basis tree. This property, also noted in [34], is illustrated in Figure 5.

IL1

18

FIGURE 5

NODE LENGTH LISTS ASSOCIATED

WITH FIGURE 2

MODE PH PA THREAD DEPTH POT ITCAP

II23 3 I3

2 I 1 6 2 1 1 I
3 I3 2 2 12

4 10 a 7 4 0 4

5 6 10 a 4 1 2

6 2 4 5 3 1 2

7 I0 19 1 4 a 0

a It 22 9 I 03

9 a 17 10 2 0
10 9 21 4 3 0 3

It I0 0

19

It may be remarked that the node potentials associated with an

optimal basis tree also provide valuable information regarding the

minimum cut problem. Specifically, the dual variables indicate which

side of the cut the node lies on; i.e., node i is on the s-side of the

cut if and only if ri = 1. Arcs whose capacities define the capacity

of the cut are also identified by the node potentials: the capacity of

arc (i,j) is included in the capacity of the cut if I 7 it" Addition-

ally, the arc is directed from s (t) to t (s) if i= 1 (0) and Tr = 0

(1).

In view of the foregoing observations, the general form of the

steps of this specialized primal simplex algorithm for the maximum flow

problem may be summarized as follows:

STEP 1: [INITIALIZATION] Select an initial feasible basis tree rooted

at node d.

STEP 2: [DUAL SOLUTION] Determine the potential n. of each node,

according to the preceding observations, that results by

setting 7 d = 0.

STEP 3: [ENTERING ARC] Select a non-basic arc e from node i to node

j such that (a) i 1 I, iT. = 0, and x efi 0, or
j e

(b) i 0 O, T. - 1, and x = u e

If no such arc exists, stop. The optimal solution has been

Ifound.

STEP 4: [LEAVING ARC] If xe - 0 (x m u), determine the maximum
e e e

amount, 6, that flow can be increased (decreased) on arc

(ij) by changing the flows on the unique path from node i

20

to node j in the current basis tree. If 6 u ,v go to STEP 6.

STEP 5: [CHANGE OF BASIS] If x e= ue set 6 =-6. Let arc r be one

of the arcs that only allows a flow change of 161 in STEP 4.

Change the flow by 6 on the unique path from node i to node

j in the basis tree. Change the flow on arc e by 6. Replace

arc r with arc e in the set of basic arcs AT~ and update the

basis tree labels. Go to STEP 3.

STEP 6: [NO CHANGE OF BASIS] If x e u e, set 6=-u e. Otherwise set

6 = u e. Change the flow by 6on the unique path from node i

to node J in the basis tree. Change the flow on arc e by 6

Go to STEP 3.

The specific implementation of each step of the preceding algo-

rithm, of course, plays a major role in determining the overall effi-

ciency of a particular computer code. During the extensive testing

of this primal simplex maximum flow algorithm, over twenty alternative

implementations of the basic algorithm were developed. These alter-

natives were used to determine the impact of the choice of the start-

ing basis (STEP 1), selection of the entering arc (STEP 3), and the

selection of the leaving arc (STEP 4).

Techniques whose efficiency has been well-established were used

to update the list structures (STEPS 2, 5, and 6). We exploited the

fact that the unique basis equivalent path (for any entering arc)

contains the root node d, thereby making it possible to update the

flows on the arcs in this path in a single pass. This one pass update

is efficiently carried out by using the predecessor node and depth

21

functions (in conjunction with the net capacity function).

The next subsections contain descriptions of the various start and

pivot strategies examined. The final subsection contains the results

of our testing.

4.2 Starts

Four basic implementations of STEP 1 were tested during the course

of this study. The first implementation is referred to as the LIFO

label-out start procedure. The basic steps of this procedure are:

STEP 1A: [INITIALIZATION] Initialize the predecessor node function:

PN(d) = 0, PN(s) = d, PN(t) = d.

Initialize a node label function:

LABEL(d) = -1

LABEL(s) = -1

LABEL(t) = -1

LABEL(i) = 0 for all i C N - (s,t}

Set i = s.

STEP 1B: [NODE SCAN] For each arc (i,j) in the forward star of node i,

check the label status of node j. If LABEL(j) = 0, then set

PN(j) = i, LABEL(j) - LABEL(i) and LABEL(i) = J.

STEP 1C: [NEXT NODE] Set i = LABEL(i). If i > 0 go to STEP IB. Other-

wise, the construction of the initial LIFO label-out tree is

complete.

This implementation uses the node label function (LABEL) as a depth

first sequence list. That is, each newly labeled node is placed at the

22

front of the sequence list. Since this approach only requires a single

pass through the arc data, it uses very little c.p.u. time to execute.

The creation of the necessary node function values are easily incor-

porated into STEP lB so that all initialization is carried out during

the construction of the initial basis tree.

The initial solution constructed by the LIFO label-out start pro-

cedure exhibits the following characteristics: all arcs, basic as well

as non-basic, have zero flow; all nodes except the terminal and the root

are on the s-side of the basis tree; and all basic arcs, except (t,d)

are directed away from the root.

The second implementation of STEP 1 is called the FIFO label-out

start procedure. This start is identical to the LIFO label-out start

except that each newly labeled node is placed at the back, instead of

the front, of the sequence (LABEL) list. Thus it has the characteristics

indicated for the LIFO procedure.

The primary difference between the two methods is the shape of

the basis tree. FIFO, the breadth first start, tends to construct a

wide, shallow initial tree whereas LIFO, the depth first start, tends to

construct a narrow, deep initial tree.

The third implementation of STEP 1 that was tested is called the

balanced tree start procedure. Unlike the other implementations, this

procedure requires multiple passes of the arc data, and therefore more

c.p.u. time is required to execute the start. However, this start

procedure, as its name implies, attempts to balance the number of the

nodes on the s-side and t-side of the basis tree, and was motivated by

.1

23

the fact that the only pivot eligible arcs (STEP 3) are those whose

nodes are on opposite sides of the basis tree. By balancing the number

of nodes on each side, we expected that the entering arc could be

selected more efficiently. The steps of the balanced tree start are

outlined below.

STEP 1A: [INITIALIZATION] Initialize the predecessor node function:

PN(d) = 0, PN(s) = d, PN(t) = d.

Initiate a node label function:

LABEL(d) = -1

LABEL(s) = -1

LABEL(t) = 1

LABEL(i) = 0 for all i e N - {s,t}

Set i = s.

STEP IB: [NODE SCAN CHOICE] If LABEL(i) = -1, go to STEP 1D. If

LABEL(i) = 0, go to STEP 1E.

STEP IC: [NEXT NODE] If a complete pass of the arc data fails to re-

label any nodes, go to STEP 1F. Otherwise, select a node i.

Go to STEP lB.

STEP 1D: [SCAN DOWN] Set LABEL(i) = -2. For each arc (i,j) in the

forward star of node i, check the label status of node J.

If LABEL(J) = 0, then set PN(j) = i and LABEL(j) = -1. Go

to STEP 1C.

STEP 1E: [SCAN UP] Select an arc (i,j) in the forward star of node i

such that LABEL(J) = 1. If no such arc exists, go to STEP 1C.

Otherwise let PN(i) = J and LABEL(i) = 1. Go to STEP 1C.

24

STEP IF: [FINAL PASS] For each arc (i,j) such that LABEL(i) = 0 and

LABEL(j) # 0 let PN(i) = j and LABEL (i) = 1.

The initial multiple passes through the arc data (STEPS 1C, 1D,

and 1E) attempt to select as many arcs as possible that are either

directed away from the root node on the s-side or toward the root node

on the t-side. The final pass through the arc data allows any unlabeled

nodes to be assigned to the t-side by means of arcs directed toward the

root. Like the other two start procedures, all network arcs have zero

initial flow. It should be noted that it is unnecessary to repeat the

initial steps until a pass of the arc data fails to add another arc to

the tree (STEP 1C).

The final start procedure tested, called the modified balanced tree

start, begins the final pass (a modified STEP IF) as soon as an initial

pass (STEPS lB-lE) adds fewer than n1 nodes to the basis tree, or as

soon as a total of n 2 nodes have been added to the basis tree.

4.3 Pivot Strategies

One of the most crucial aspects of any primal simplex network algo-

rithm is the pivot strategy that is employed to select a non-basic arc

to enter the basis. This corresponds to STEP 3 of the primal simplex

maximum flow network algorithm. Many different pivot strategies were

developed and tested during this study. This includes simple modifiL

tions of the pivot strategies that have proven successful for more

general network flow problems [20, 21, 36), as well as new strategies

developed from insights into the special structure of the maximum flow

4

25

network problem. The level of complexity of these pivot strategies

range from the simple sequential examination of forward stars to a

complex candidate list with a steepest descent evaluation criteria.

A brief description of each of the fundamental pivot strategies is

presented.

In order for an arc to be pivot eligible its nodes must be on

opposite sides of the basis tree. In addition, its flow must be at

the appropriate bound. Specifically, arc k = (i,j) is a candidate to

enter the basis if and only if

(a) iTi = , T- 0, and xk = 0 or

(b) 7T. = 0, T. = 1, and xk = uk.
:i j

In case (a), arc k currently has no flow and is directed away from the

s-side and toward the t-side. It is advantageous to attempt to increase

flow on this arc by pivoting it into the basis. In case (b), arc k

currently has as much flow as it can handle and it is directed away from

the t-side and toward the s-side. In this instance, it appears to be

advantageous to decrease flow on the arc, thus leading to a net increase

in flow from the source to the terminal. For example, in Figure 4 arc

(4,5) is eligible to enter the basis from its upper bound (case (b)

pivot).

In a sense, the occurrance of a case (b) pivot implies that the

algorithm previously made a "mistake" by putting too much flow on arc

k, since at this point it appears beneficial to decrease flow on the

arc. A statistical analysis of the test problems used for this study

26

indicates that the primal simplex maximum flow network algorithm tends

to concentrate on case (a) pivots. For most of the variants of the

basic algorithm, over 98% of the pivots were of the case (a) type.

This observation motivated the development of some specialized pivot

strategies that initially concentrate on the case (a) entering arcs.

This yields a two-phase (suboptimization) solution approach. During

Phase I, only the case (a) arcs are allowed to enter the basis, and

during Phase II, any pivot eligible arc is allowed to enter the basis.

The first class of pivot strategies is called sequential because

the arcs are examined sequentially. The simplest sequential pivot

strategy selects the first pivot eligible arc encountered to enter the

basis. A two-phase sequential pivot strategy restricts its initial

pivots to the case (a) type. The extent to which this restriction is

made can have an impact on the overall solution efficiency of the algo-

rithm. At one extreme, all case (b) pivots are postponed until the very

end of the solution process. That is, the algorithm suboptimizes the

problem by just allowing the case (a) pivots, then optimizes the problem

by allowing both case (a) and case (b) pivots. Another implementation

of the two-phase sequential pivot strategy restricts pivots to the

case (a) type for the first p1 pivots (or the first p2 passes through

the arc data).

The three sequential approaches are called, respectively, (1)

SEQ/NS (sequential with no suboptimization), (2) SEQ/CS (sequential

with complete suboptimization), and (3) SEQ/PS (sequential with partial

suboptimization). Clearly, SEQ/PS is the most general sequential pivot

27

strategy since setting p1 0(-) yields the SEQ/NS (SEQ/CS) Pivot

strategy.

The second group of pivot strategies is called candidate list

strategies because they involve the use of a list of arcs that are

potential candidates to enter the basis [311. These strategies

operate by restricting the choice for the entering arc to arcs con-

tained in the candidate list. Periodically, this list must be re-

loaded with a fresh set of candidate arcs. The frequency of reloading

the list, as well as the length of the list, affect the solution ef-

ficiency of the algorithm. Various criteria were studied to control

the "quality" of the candidate list. This quality is governed by both

the choice of the arcs to place in the list and the choice of the

candidate arc to pivot into the basis.

Three criteria were considered in determining the best approach

for (re)loading the candidate list. The first criterion is sequential.

That is, arcs are loaded into the candidate list by sequentially examin-

ing the arc data. The specific implementations of the sequential

criterion are labeled SEQ/NS, SEQ/CS, or SEQ/PS, depending upon whether

no, complete, or partial suboptimization is desired.

The second criterion for selecting arcs to be placed in'the

candidate list was motivated by the fact that the amount of difficulty

involved in carrying out the list updating procedure (STEPS 2, 5, and

6) depends to a large extent on the number of arcs in the unique (basis

equivalent) path between the two nodes of the entering arc, which is

the path on which the flow will be changed from the source to the

28

terminal. Since the basis equivalent path of any pivot eligible arc

contains the root, the number of arcs in this path is simply the sum

of the depth function values for the two endpoints of the incoming arc.

For these reasons, the second criterion used to reload the candi-

date list restricts the selection of candidates to arcs whose basis

equivalent path contains fewer than p arcs. The choice of the cut-off

value, p, is dynamic in nature. Initially p is selected to be small,

but to guarantee optimality, p is eventually increased to INI. The

implementations of this criterion are labeled BEP/NS, BEP/CS, and

BEP/PS, depending upon the level of suboptimization desired.

Computationally, the BEP criteria are more difficult to implement

than the SEQ criteria. However, the depth function enables the number

of arcs on the basis equivalent path of a pivot eligible arc to be

determined quite readily.

The third criterion considered for selecting arcs to be placed in

the candidate list is a form of the steepest descent criterion. Only

arcs that cause a major change in the objective function are con-

sidered as candidates. Since the objective of the maximum flow network

problem is simply to maximize the flow from the source to the terminal,

this criterion reduces to a largest augmentation criterion. Each arc

placed on the candidate list must allow a flow change of at least q

units, where the cut-off value q is selected dynamically. The three

implementations of the largest augmentation criterion are called AUG/NS,

AUG/CS, and AUG/PS. Because the determination of the allowable flow

change associated with a pivot eligible arc requires the complete

29

traversal of its basis equivalent path, implementations of the AUG

criterion are computationally cumbersome.

Slight generalizations of these basic criteria were used to

select an entering arc from the candidate list. Depending upon the

level of suboptimizat ion, the SEQ criterion simply selects the first

pivot eligible arc encountered in the candidate list, the BEP criterion

selects the arc in the candidate list with the fewest arcs in its basis

equivalent path, and the AUG criterion selects the arc that allows the

largest flow augmentation.

Additional considerations for candidate list strategies include

rules for controlling the length of the list as well as the frequency

of reloading. In general, our tested strategies employ a dynamic

length candidate list in which the number of elements is a function of

the degree of difficulty involved in locating pivot eligible arcs.

Typically, this results in an initial candidate list of twenty to

fifty arcs. As optimality is approached, and the identification of

pivot eligible arcs becomes harder, the length of the list is reduced

to five or fewer arcs. Some of the tested strategies also used a

maximum pivot counter to restrict the number of pivots between reload-

ings.

4.4 Leaving Arc Selection

Only two criteria were considered for determining the leaving arc

(STEP 4) from the collection of those that restrict the amount of flow

change 6 (i.e., that yield the minimum ratio in the standard simplex

test for the outgoing variable). The customary choice is simply to

30

select the first arc that qualifies, and we used this in most of the

primal simplex codes developed for this study. However, we also tested

a second strategy that has been proposed as a mechanism for controlling

cycling. This strategy [3, 7, 8] is simply to select the binding arc

closest to the terminal.

4.5 Computational Testing

For the more than twenty variants of the specialized primal simplex

maximum flow algorithm developed and tested during this study, the

principal questions we considered were:

1) What is the best starting basis? (STEP 1)

2) What is the best entering arc selection rule? (STEP 3)

3) What is the best leaving arc selection rule? (STEP 4)

4) What is the best data structure for storing the original

problem data?

To some extent, the determination of the answer to one question depends

on the answers to the other three questions. For example, when the

original problem data is stored in the "random" format, it is virtually

impossible to implement any pivot strategy based on processing a node's

forward star.

Choice of Leaving Arc

The first question we address concerns the appropriate choice for

the leaving arc (STEP 4). As mentioned earlier, two strategies were

tested in order to answer this question. The first strategy is known

31

as the network augmenting path (NAP) rule. This strategy requires aI special type of basis structure. As specialized for the maximum flow

problem, every basis with the NAP structure is characterized by having

a positive net capacity for all basic arcs on the t-side of the tree.

Given an initial starting basis of this form, the NAP rule assures all

subsequent bases will have this form. Of the starting procedures

developed for this study, only the LIFO and FIFO label-out starts yield

an initial basis tree with the necessary NAP structure.

Two implementations of the primal simplex algorithm were developed

to test alternatives for selecting the leaving arc. The first code,

NAP, uses the network augmenting path rule to select the leaving arc.

The second code, NONAP, uses the simple "first minimum found" rule

(selecting the first arc that qualifies to leave the basis). Both

codes use the same LIFO label-out start procedure, sequential entering

[arc selection, and forward star data structure.

Table V presents the results of applying these two codes to the

test problem data base. Neither code appears to be a definite winner

on the random, multi-terminal, and transit grid problems, but the NONAP

code outperforms the NAP code on the hard problems. The reason is

simple: the special structure of the hard problem causes virtually

every arc on the basis equivalent path to be binding. The NAP code

selects the out'going arc as close as possible to the terminal node,

whereas the NONAP code tends to select the outgoing arc as close as

possible to the entering arc. In fact, in about 90% of the nondegenerate

pivots, the NONAP code selected the outgoing arc to be the same as the

32

TABLE V

SOLUTION TIMES IN CPU SECONDS

PROBLEM NAP NONAP LIFO MODBAL SEQCS RANDOM

R1 .09 (.12) .10 (.13) .09 (.12) .10 (.13) .08 (.11) .11 (.12)
R2 .23 (.28) .23 (.28) .19 (.24) .22 (.26) .18 (.23) .25 (.26)
R3 .22 (.28) .23 (.29) .19 (.25) .22 (.28) .16 (.22) .21 (.22)
R4 .34 (.41) .36 (.43) .32 (.39) .24 (.31) .16 (.23) .23 (.24)
R5 .53 (.64) .47 (.58) .38 (.49) .49 C.60) .33 (.44) .47 (.49)
R6 .66 (.80) .66 (.80) .52 (.66) .58 (.72) .52 (.66) .58 (.60)
R7 .40 (.51) .42 (.53) .40 (.51) .32 (.43) .27 (.38) .36 (.38)
R8 .64 (.81) .64 (.81) .55 C.72) .60 (.77) .48 (.65) .51 (.54)
R9 1.04 (1.27) 1.00 (1.23) 1.21 (1.44) 1.03 (1.26) .84 (1.07) .93 (.96)
R1O .90 (1.07) .81 (.98) .73 (.90) .39 (.56) .46 (.63) .51 (.54)
Rhl 1.36 (1.58) 1.22 (1.44) .85 (1.07) .68 (.90) .69 (.91) .77 (.81)
R12 1.99 (2.26) 1.81 (2.08) 2.32 (2.59) 1.75 (2.02) 1.45 (1.72) 1.62 (1.67)

MRl .29 (.32) .32 (.35) .28 (.31) .28 (.31) .26 (.29) .28 (.29)
MR2 .90 (.95) 1.01 (1.06) .77 (.82) .59 C.64) .58 (.63) .77 (.78)
MR3 .68 (.74) .87 (.93) .68 (.74) .61 (.67) .56 (.62) .58 (.59)
MR4 .52 (.59) .60 (.67) .54 (.61) .34 (.41) .28 (.35) .42 (.43)
MRS 1.25 (1.36) 1.18 (1.29) 1.25 (1.36) .88 (.99) .83 (.94) 1.04 (1.06)
MR6 2.22 (2.36) 2.02 (2.16) 2.08 (2.22) 1.34 (1.48) 1.49 (1.63) 1.92 (1.92)
MR7 1.40 (1.51) 1.24 (1.35) 1.00 (1.11) .71 (.82) .64 (.75) .80 (.82)
MR8 1.98 (2.15) 2.12 (2.29) 1.89 (2.06) 1.02 (1.19) 1.00 (1.17) .95 (.98)
MR9 4.53 (4.76) 4.41 (4.64) 3.48 (3.71) 2.70 (2.93) 2.52 (2.75) 2.90 (2.93)
MR10 1.36 (1.53) 1.09 (1.26) 1.16 (1.33) .77 (.94) .70 (.87) .77 (.80)
MR11 3.26 (3.48) 3.09 (3.31) 2.09 (2.31) 1.64 (1.86) 1.97 (2.19) 2.14 (2.18)
MR12 6.95 (7.23) 7.13 (7.41) 6.11 (6.39) 4.70 (4.98) 5.39 (5.67) 5.82 (5.87)

TGI .28 (.33) .26 (.31) .45 (.50) .48 (.53) .21 (.26) .42 (.43)
TG2 .21 (.25) .18 (.22) .52 (.56) .39 (.43) .16 (.20) .38 (.39)
TG3 .60 (.66) .56 (.62) 1.03 (1.09) .86 (.92) .48 (.54) .75 (.76)
TG4 .52 (.60) .49 (.57) .94 (1.02) .80 (.88) .41 (.49) .79 (.80)
TG5 .93 (1.06) .96 (1.09) 1.87 (2.00) 1.56 (1.69) .73 (.86) 1.23 (1.25)
TG6 .73 (.88) .70 (.85) 1.51 (1.66) 1.21 (1.36) .58 (.73) 1.38 (1.40)
TG7 1.63 (1.81) 1.62 (1.80) 2.74 (2.92) 2.22 (2.40) .96 (1.14) 1.91 (1.94)
TG8 1.56 (1.72) 1.50 (1.66) 2.50 (2.66) 1.99 (2.15) 1.12 (1.28) 2.02 (2.05)

HI .07 (.07) .06 (.06) .10 (.10) .11 C .11) .06 (.06) .05 (.05)
H2 .57 (.60) .52 (.55) .68 (.71) .65 (.68) .43 (.46) .42 (.42)
H3 1.82 (1.88) 1.70 (1.76) 2.40 (2.46) 2.35 (2.41) 1.39 (1.45) 1.35 (1.36)
H4 4.22 (4.31) 3.98 (4.07) 4.35 (4.44) 4.43 (4.52) 3.22 (3.31) 3.09 (3.10)
H5 8.12 (8.25) 7.67 (7.80) 8.91 (9.04) 8.66 (8.79) 6.16 (6.29) 5.92 (5.93)

*This table provides optimization times and total solution times in parentheses (optimization
plus initialization) on The University of Texas' CDC 6600. All times are in cpu seconds and
reflect the average times for a number of problems of each size.

33

entering arc. This is a very easy pivot to perform since the structure

of the basis tree remains unchanged. On the other hand, the NAP code

selected the outgoing arc to be the entering arc on only about 5% of

the nondegenerate pivots, resulting in more "hard" pivots than the

NONAP code.

The reason that the NAP and NONAP codes performed basically the

same on the other problen topologies may be related to the fact that

the entering arcs are not as likely to be binding. Indeed, limited

sampling of the test problems indicates the entering arc is binding

for only 15% to 20% of the nondegenerate pivots for these other

topologies.

Since the network augmenting path rule did not improve solution

speeds and is not compatible with the balanced tree start procedures,

all further reported computational testing is concerned with codes

that use the first minimum found rule for STEP 3.

Choice of Start Procedures

Four basic start procedures (STEP 1) were implemented. The first

code, referred to as LIFO, uses the last-in first-out or depth first

rule to construct the initial basis tree. The second code, FIFO, uses

the similar first-in first-out rule. Both of these procedures require

the arcs to be processed in forward star sequence. The balanced tree

start was implemented in the code BAL and the modified balanced tree

start was implemented in MODBAL. The MODBAL implementation uses the

parameter settings ni - .lOjNJ and n2 . 751N I which cause the final

pass to begin as soon as an initial pass fails to add at least 10% of

34

the nodes to the tree or as soon as the tree contains at least 75% of

the network nodes. Limited testing with other parameter settings in-

dicated that these values were quite robust across all problem topologies.

All four implementations used the same entering arc selection rule.

Specifically, a candidate list of length twenty was used. The SEQ/CS

criteria was used to load the list and the BEP/NS criteria was used to

select entering arcs from the list.

The testing indicated that the LIFO and FIFO codes perform approxi-

mately the same in terms of solution time. The starting bases generated

by the two codes, however, are quite different. As expected, the LIFO

code constructs a thin, deep initial basis tree and the FIFO code con-

structs a fat, shallow initial basis tree. However, the structure of

the optimal basis tree does not resemble that of either initial tree.

The principal shortcoming of both codes is that they initially

place all nodes except the terminal on the s-side of the tree. This

makes the identification of eligible entering arcs somewhat difficult

during the initial pivots, as reflected by the fact that the average

number of arcs examined per pivot is much higher during the early pivots

than during the middle pivots for both the LIFO and FIFO code.

Computational tests comparing the modified balanced tree start

KODBAL and the standard balanced tree start BAL indicate MODBAL is

clearly superior. This superiority is most pronounced on the multi-

terminal random problem class. On selected problems in this class,

MODBAL outperformed BAIL on all but one problem.

Due to the similarity of the LIFO and FIFO times, and the superior-

- . - ______-____

35

ity of MODBAL over BAL times, only the results for LIFO and MODBAL

are presented in Table V. These results indicate that the modified

balanced tree start is superior to the other start procedures tested,

particularly for the problem classes designed to simulate multi-

terminal networks (i.e., multi-terminal random and transit grid).

Choice of Entering Arc

Although many codes were developed to test the impact of the

entering arc selection rule (STEP 3), only six of the codes will be

presented in any detail. All codes use the modified balanced tree

start procedure, the first minimum rule for selecting the leaving

arc, and the forward star form for storing the original problem data.

The first three codes, SEQNS, SEQCS, and SEQPS, were developed

to test the impact of suboptimization on overall solution speeds.

SEQNS uses the sequential pivot selection rule with no suboptimization.

SEQCS, on the other hand, uses the same sequential entering arc

criterion, but requires complete suboptimization of the problem using

only case (a) entering arcs before any case (b) entering arcs are allowed.

SEQPS uses the sequential criterion with partial suboptimization. Phase

I (case (a) pivots only) was terminated after p = .501N pivots.

Computational testing indicated that SEQCS is superior to SEQNS on

all but the smallest networks. The superiority of SEQCS is particularly

evident on the large multi-terminal random problems where SEQNS ran as

much as 60% slower than SEQCS.

The performance of SEQPS is harder to evaluate. Neither SEQPS nor

6,~ ...

36

SEQCS dominated the other. However, SEQCS is highly robust, yielding

good solution times for all problems, while SEQPS yields solution times

whose quality is far more variable. Barring the possibility of finding

a value for the p parameter for SEQPS that improves its stability, the

SEQCS code is preferable for situations in which robustness is valued.

The next three codes tested use a candidate list of length twenty

to control the selection of entering arc. Each employs the same criterion

for reloading and redimensioning the list: reloading occurs when all

pivot eligible arcs in the list have been used; redimensioning occurs

when a complete pass of the arc data fails to yield enough arcs to fill

the list (whereupon the dimension of the list is set equal to the

number of pivot eligible arcs actually found).

All three codes use the SEQ/CS criterion to load the candidate

list. The first code, referred to as CANSEQ, uses the SEQ/NS criterion

to select the entering arc from the candidate list, while the second

code, CANBEP, uses the BEP/NS criterion, and the third code, CANAUG,

uses the AUG/NS criterion.

CANAUG turned out to be a definite loser. The reason for its poor

performance is that for each pivot, the basis equivalent path of every

arc in the candidate list must be traversed in order to identify the

arc with the maximum minimum ratio. CANAUG tends to require fewer

pivots than the other codes tested, but its solution times ranged from

50% to 300% slower. Other implementations of the largest augmentation

criteria, including candidate list and non-candidate list codes with no

and partial suboptimization, performed just as badly.

37

Table V presents the solution times for SEQCS and CANBEP. In the

table, CANBEP is referred to as MODBAL since it is the same code used

to test the choice of starting bases. The performance of these two

codes is basically the same on the random and multi-terminal random

problems, but SEQCS dominates CANBEP on the transit grid and hard

problems. SEQCS runs up to twice as fast as CANBEP on the transit

grid problems.

A partial explanation of the poor performance of the minimum basis

equivalent path length criterion on the transit grid problems is that

it generates more pivots, both total and degenerate, than the sequential

criterion. For the transit grid problems, the lengths of the flow aug-

menting paths (non-degenerate basis equivalent paths) tend to be long.

By concentrating on the short basis equivalent paths, CANBEP ends up

doing more work than the "less intelligent" approach used in SEQCS.

Choice of Data Structure

The last question considered regards the choice of data structure

for storing the original problem data. All codes previously discussed

made use of the forward star form. The best such code appears to be

SEQCS. A number of codes using the random form were also developed.

The best of these, simply referred to as RANDOM, uses the modified

balanced tree start procedure, the SEQ/NS entering arc selection rule,

and the first minimum found leaving arc selection rule. Table V pre-

sents the times for the best forward star form code, SEQCS, and the

best random form code, RANDOM. The results are fairly clear: SEQCS

is faster than RANDOM for almost all problems, except notably the hard

38

problems. The most pronounced superiority of SEQCS is for the transit

grid problems which have a large number of arcs incident on the source

and terminal nodes (problem sets TG2, TG4, TG6, and TG8). On these

problems SEQCS runs as much as twice as fast as RANDOM.

The overall conclusion from this computational testing of the

primal simplex maximum flow codes is that SEQCS is the most consistent

winner. To recapitulate, SEQCS uses the modified balanced tree start

(with nI
= .101NI and n2 = .751NI), the sequential entering arc selection

rule with complete suboptimization, the first minimum rule for selecting

the leaving arc, and the forward star form for storing the original

problem data.

Comparison with the Classic Label Tree Approach

We also implemented a number of versions of the standard label tree

approach of Ford and Fulkerson [15, 16, 17]. Not only did we investigate

the various refinements suggested by Edmonds and Karp [12], Fong and Rao

[14], and others, but we also examined a number of alternative data

structures. The best of our implementations of the classic approach scans

the labeled nodes in a FIFO fashion. The determination of the allowable

flow augmentation is postponed until after breakthrough occurs. A

portion of the labels are maintained after breakthrough. This enables

an advanced start to be made in the FIFO node scanning operation. A

powerful data structure, referred to as the fixed mirror form, is used

to store the representation of the network. A complete description of

this data structure is provided in our related study [221.

39

The solution times for the best overall primal code (SEQCS) and

label tree code are presented in Table VI. In all except the random

class of problems the primal approach dominates the classic approach.

Mnother important comparison needs to be made between the two

approaches. The computer core storage requirements of the primal

method are decidedly superior. Since the maximum flow problem typical-

ly is solved as a subproblem within a larger master problem, the amount

of core required by the solution procedure can be critical.

All of our computer programs for solving the maximum flow problems

are roughly the same size (about two hundred statements). Consequently,

the best comparison of core requirements is achieved by expressing them

in terms of the dimensions (nodes and arcs) of Zhe network. The primal

codes use 7 node length and 2 arc length arrays, whereas the label tree

codes use 4 node length and 6 arc length arrays. Since it is typical

for the number of arcs to greatly exceed the number of nodes, the label

tree code consumes almost three times the core of the primal code.

In summary, the primal approach for solving maximum flow problems

appears to be superior to the popular classical approach in both of the

critical domains of solution speed and core requirement.

40

TABLE VI

SOLUTION TIMES FOR THE BEST
PRIMAL AND LABEL TREE CODES

PROBLEM PRIMAL LABEL TREE

RI .08 (.11) .06 (.13)
R2 .18 (.23) .14 (.24)

R3 .16 (.22) .28 (.39)
R4 .16 (.23) .21 (.32)
R5 .33 (.44) .41 (.55)
R6 .52 (.66) .40 (.60)
R7 .27 (.38) DNR
R8 .48 (.65) DNR
R9 .84 (1.07) DNR
RIO .46 (.63) DNR

R .69 (.91) DNR
R12 1.45 (1.72) DNR

MRI .26 (.29) .52 (.55)
MR2 .58 (.63) 2.70 (2.78)
MR3 .56 (.62) 2.41 (2.51)
MR4 .28 (.35) .87 (.97)
MR5 .83 (.94) 2.65 (2.80)

MR6 1.49 (1.63) 8.30 (8.49)

MR7 .64 (.75) DNR
MR8 1.00 (1.17) DNR
MR9 2.52 (2.75) DNR
MR10 .70 (.87) DNR
MRI1 1.97 (2.19) DNR
MRI2 5.39 (5.67) DNR

TG1 .21 (.26) 1.02 (1.07)
TG2 .16 (.20) 1.24 (1.29)

TG3 .48 (.54) 3.27 (3.37)

TG4 .41 (.49) 3.03 (3.13)

TG5 .73 (.86) DNR
TG6 .58 (.73) DNR

TG7 .96 (1.14) DNR

TG8 1.12 (1.28) DNR

HI .06 (.06) .20
H2 .43 (.46) 3.73
H3 1.39 (1.45) DNR
H4 3.22 (3.31) DNR

H5 6.16 (6.29) DNR

* This table provides optimization times

and total solution times in parentheses
(optimization plus initialization) on The

University of Texas' CDC 6600. All times
are measured in cpu seconds and reflect
the average times for a number of problems

of each size.

-~ iI

REFERENCES

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis
of Computer Algorithms, Addison-Wesley, 1975.

2. R. D. Armstrong, D. Klingman, and D. Whitman, "Implementation and
Analysis of a Variant of the Dual Method for the Capacitated Trans-
shipment Problem," Research Report CCS 324, Center for Cybernetic
Studies, The University of Texas at Austin, 1978.

3. R. Barr, J. Elam, F. Glover, and D. Klingman, "A Network Augmenting
Path Basis Algorithm for Transshipment Problems," Research Report
CCS 272, Center for Cybernetic Studies, The University of Texas at
Austin. To appear in An International Symposium Volume on Extremal
Methods and Systems Analysis.

4. R. Barr, F. Glover, and D. Klingman, "Enhancements of Spanning Tree
Labeling Procedures for Network Optimization," INFOR, 17, 1 (1979)
16-34.

5. G. Bayer, "MAXFLOW, ACM Algorithm 324," Communications of the ACM,
11 (1968) 117.

6. T. Cheung, "Computational Comparison of Eight Methods for the
Maximum Network Flow Problem," Technical Report 78-07, Department
of Computer Sciences, University of Ottawa, Ontario, 1978.

7. W. H. Cunningham, "A Network Simplex Method," Mathematical Pro-
gramming, 11 (1976) 105-116.

8. W. H. Cunningham, "Theoretical Properties of the Network Simplex
Method," Mathematics of Operations Research, 4 (1979) 196-208.

9. G. B. Dantzig and D. R. Fulkerson, "On the Max-Flow Min-Cut
Theorem of Networks," Annals of Mathematical Studies, Princeton
University Press, Princeton, N.J. (1956) 215-221.

10. R. Dial, F. Glover, D. Karney, and D. Klingman, "A Computational
Analysis of Alternative Algorithms and Labeling Techniques for
Finding Shortest Path Trees," Research Report CCS 291, Center for
Cybernetic Studies, The University of Texas at Austin. To appear
in Networks.

41

42

11. E. A. Dinic, "Algorithm for Solution of a Problem of Maximum
Flow in a Network with Power Estimation." Soviet Math. Doklady,
11 (1970) 1277-1280.

12. J. Edmonds and R. M. Karp, "Theoretical Improvements in Algo-
rithmic Efficiency for Network Flow Problems," Journal of the
Association for Computing Machinery, 19 (1972) 248-264.

13. S. Even and R. E. Tarjan, "Network Flow and Testing Graph Con-
nectivity," SIAM Journal of computing, 4 (1975) 507-518.

14. C. 0. Fong and M. R. Rao, "Accelerated Labeling Algorithms for
the Maximal Flow Problem with Applications to Transportation and
Assignment Problems," Working Paper 7222, Graduate School of
Business, University of Rochester (1974).

15. L. R. Ford and D. R. Fulkerson, "Maximal Flow Through a Network,"
Canadian Journal of Mathematics, 8 (1956) 399-404.

16. L. R. Ford and D. R. Fulkerson, "A Simple Algorithm for Finding
Maximal Network Flows and an Application to the Hitchcock Problem,"
Canadian Journal of Mathematics, 9 (1957) 210-218.

17. L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton
University Press, Princeton, N.J. (1962).

18. D. R. Fulkerson and G. B. Dantzig, "Computations of Maximal Flows
in Networks," Naval Research Logistics Quarterly, 2 (1955) 277-283.

19. J. Gilsinn and C. Witzgall, "A Performance Comparison of Labeling
Algorithms for Calculating Shortest Path Trees," NBS Technical Note
772, U.S. Department of Commerce (1973).

20. F. Glover, D. Karney, and D. Klingman, "A Computational Study on
Start Procedures, Basis Change Criteria, and Solution Algorithms
for Transportation Problems," Management Science, 20 (1974) 793-
813.

21. F. Glover, D. Karney, and D. Klingman, "Implementation and Computa-
tional Comparisons of Primal, Dual, and Primal-Dual Computer Codes
for Minimum Cost Network Flow Problems," Networks, 4 (1974) 191-212.

22. F. Glover, D. Klingman, J. Mote, and D. Whitman, "Comprehensive
Computer Evaluation and Enhancement of Maximum Flow Algorithms,"
Research Report CCS 356, Center for Cybernetic Studies, The University
of Texas at Austin, 1979.

43

23. D. Goldfarb and M. D. Grigoriadis, "An Efficient Steepest-Edge
Algorithm for Maximum Flow Problems," Tenth International Symposium
on Mathematical Programming, Montreal, 1979.

24. R. Helgason, J. Kennington, and J. Lall, "Primal Simplex Network
Codes: State-of-the-Art Implementation Technology," Technical
Report IEOR 76014, Department of Industrial Engineering and
Operations Research, Southern Methodist University (1976).

25. E. L. Johnson, "Networks and Basic Solutions," Operations Research,

14 (1966) 619-623.

26. A. V. Karzanov, "Determining the Maximal Flow in a Network by the
Method of Preflows," Soviet Math. Doklady, 15 (1972) 434-437.

27. B. Kinariwala and A. G. Rao. "Flow Switching Approach to the
Maximum Flow Problem: I." Journal of the Association for Computing
Machinery, 24 (1977) 630-645.

28. D. Klingman, J. Mote, and D. Whitman, "Improving Flow Management
and Control Via Improving Shortest Path Analysis," Research Report
CCS 322, Center for Cybernetic Studies, The University of Texas at
Austin, 1978.

29. P. M. Lin and B. J. Leon, "Improving the Efficiency of Labellng
Algorithms for Maximum Flow in Networks," Proceedings IEEE Inter-
national Symposium on Circuits and Systems, (1974) 162-166.

30. V. M. Malhutra, M. P. Kumar, and S. N. Maheshwari, "An O(IVI3)
Algorithm for Finding Maximum Flows in Networks," Information
Processing Letters, 7, 6 (1978) 277-278.

31. J. Mulvey, "Column Weighting Factors and Other Enhancements to the
Augmented Threaded Index Method for Network Optimization," to appear
in Mathematical Programming.

32. A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms, Academic
Press (1975) 143-151.

33. S. Phillips and M. I. Dessouky, "The Cut Search Algorithm with
Arc Capacities and Lower Bounds," Management Science, 25 (1979)
396-404.

34. J. F. Shapiro, Mathematical Programming: Structures and Algorithms,
John Wiley and Sons, New York, 1979.

35. V. Srinivasan and G. L. Thompson, "Accelerated Algorithms for Labeling
and Relabeling Trees with Applications to Distribution Problems,"
Journal of the Association for Computing Machinery, 19 (1972) 712-726.

44

36. V. Srinivasan and G. L. Thompson, "Benefit-Cost Analysis of Coding
Techniques for the Primal Transportation Algorithm," Journal of the
Association for Computing Machinery, 20 (1973) 194-213.

37. N. Zadeh, "Theoretical Efficiency of the Edmonds-Karp Algorithm for
Computing Maximal Flows," Journal of the Association for Computing
achinery, 19 (1972) 184-192.

